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three-dimensional elliptical boxes: I 
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Martin d’Htres Ctdex, France 
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Abstract. We compare three problems of quantum mechanics (or more generally of wave 
mechanics) which reduce to the same problem in classical mechanics and which can also 
be treated semiclassically by the Einstein, Brillouin and Keller semiquantisation rules. The 
free particle motion in an ellipsoidal oblate or prolate cavity (a  deformed nucleus) is 
compared to that in a plane elliptical billiard box. Separation of variables is performed 
in appropriate coordinate systems. The presence of a separatrix in phase space is exhibited, 
which is connected to a potential barrier that is different for each problem. The uniform 
approximation is used to calculate W K B  phase rules appropriate to each symmetry. An 
important difference results between the prolate and the oblate systems. 

1. Introduction 

In classical mechanics a particle moving in any plane trajectory does not distinguish 
whether the dimension of the space is really two or higher. In quantum mechanics 
the wave equation may contain, in the system of coordinates appropriate to the 
symmetry, terms which depend explicitly on the dimension and symmetry. Con- 
sequently, the dynamical properties are affected and change significantly. We want to 
discuss in this paper three different quantum mechanical realisations of a single problem 
of classical mechanics which enlighten the preceding statements. 

Let us consider a particle free to move in a two-dimensional domain with an elliptic 
boundary of semi-axis R ,  and R ,  and focal distance 2f and let us assume that the 
boundary is a perfect reflector. Let us call this problem that of the elliptical ‘billiard’. 
We now embed the ‘billiard’ into a prolate or oblate ellipsoidal cavity. The correspond- 
ing quantum mechanical realisations are the study of all the eigenmodes of an elliptical 
membrane and those of prolate and oblate cavities which are associated with a zero 
angular momentum projection on the axis of symmetry. The classical dynamics of the 
elliptic ‘billiard’ was described by Berry (1981). The semiclassical quantisation of its 
eigenmodes was discussed by Keller and Rubinow (1960) according to the WKB rules 
conveniently modified by Keller ( 1959) for multidimensional systems. These rules are 
sometimes called primitive because of their severe shortcomings in the description of 
barrier effects. It is then necessary to use the uniform semiclassical approximation 
which was developed by Ford et af (1959), Miller (1968) and Child (1974). We will 
use this uniform approximation to complement the work of Keller and Rubinow on 
the membrane eigenmodes. Moreover, we will also adapt this approximation to the 
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cases of prolate and oblate ellipsoids. These modifications are absolutely necessary 
to understand the differences between the spectra of our three systems and the role 
played by the symmetry of the embedding. 

A common property of our three systems is the presence of potential barriers which 
can be found in systems of coordinates suited to the symmetries. The presence of 
these barriers leads to a division of the phase space into two regions which have already 
been described by Keller and Rubinow and by Berry. It is simpler to classify classical 
trajectories by their caustics which are either ellipses or hyperbola homofocal to the 
elliptic boundary. These families of trajectories are separated by a separatrix which 
corresponds to the summit of the barrier. We will show that it is a common feature 
of our three systems that the semiclassical eigenmodes perform the same type of 
evolution when the deformation is varied. For a zero deformation the caustics are 
circles, they become ellipses for small enough deformation, and then become hyper- 
bolic. For a specific deformation a semiclassical state stands on the sepatrix. We will 
derive a very simple rule which enables us, in the frame of the uniform approximation, 
to determine this deformation in each type of system. 

Contrary to the cases of spherical nuclear potential which were studied earlier by 
Carbonell et al (1985), the topology of our systems is not monotonic because of this 
barrier crossing effect. A barrier crossing which is topologically similar to the one 
described above has been found by Carbonell (1983) and Carbonell et a1 (1984) in 
the analysis of the plane trajectories in a deformed Woods-Saxon-type potential. 
Therefore we feel that the results of this paper form a background which may explain, 
in a simple way, the important differences in the spectra of prolate and oblate potentials 
and are relevant in understanding the single particle spectra of deformed nuclei. 

The numerical applications of this work are presented in Arvieu and Ayant (1987). 
The extensions to non-planar orbits will be discussed separately elsewhere. 

2. ‘Billiard’ problem 

In this true two-dimensional problem (in the quantum sense) the Hamilton Jacobi 
and the Schrodinger equations are separable in elliptical coordinates q and 6 defined 
by 

x = f cos 6 cosh 7) (1) 

y = f sin 6 sinh q (2) 

O S r ] < o O  O s 5 < 2 7 r .  (3) 

with 

From the Hamilton Jacobi equation we are led to the following values of the classical 
momenta p,, and pc:  

p’, = k 2  f cosh2 - E  (4) 
p i  = E - k2  f * COS* 6. ( 5 )  

W = k 2 / 2 m  (6) 

The energy is denoted as 

and the separation constant as E. 
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If the wavefunction is written as 

U' = G(7))F(5) (7) 

d2G/dv2 + ( k2 f Cosh2 7 - E )  G = 0 (8) 

d'Flde2+ (E - k' f' COS' 5)F = O .  (9) 

we find that G and F obey the Mathieu and associated Mathieu equations respectively: 

For each variable there is a potential barrier, the same in the classical and in the 
quantum problems. These barriers are complementary: when the turning point disap- 
pears for one variable a turning point appears for the other one. 

(i)  If k 2  f 2  < E the classical motion occurs in the interval 

70s 7) 7)' (10) 

with 

q0 = cosh-'(di?/ kf) 

7)' = cosh-'( R,/  f) 

and 

0 s 6 < 2 7T. (13) 

OS7)S7)' (14) 

50s 5 s 77 - 50 (15) 

(ii) If  k' f '> E the limits of variation become 

7T + 50 s 6 s 27T - 5 0  

with 

to = cos- '(JE/ kf ). (16) 

(ii) The value k2 f = E defines the separatrix. It can be seen that the trajectory 
always crosses one focus, then after one reflection the other, etc (Berry 1981). 

The wavefunction U' is seen to possess two parities. To the reflection with respect 
to Ox is associated the parity rX,  and similarly 7~~ is related to the reflection with 
respect to Oy. F and G are now seen to be of the same parity if we perform 77 + - 7 
and 5 + - 5. On the other hand, the wavefunction is either even or odd in rY, i.e. we 
have either 

F($r) = 0 (17a) 

(dF/d()(&r) = 0. (176) 

or 

We call the cases where T,  = +1 symmetric and the cases where rTT, = -1 antisymmetric. 
The WKB solutions of equations (8) and (9) can be written, within constants of 

normalisation, 
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where p,, and p, are the positive roots of (4) and ( 5 )  and where vo is either 0 or is 
defined by ( 1  I ) ,  while to is either defined by (16) or is zero. Our purpose is now to 
find the phases p, and p, in the uniform approximation. 

Let us define the classical actions as 

in terms of which we write the quantisation conditions (with h = 1 )  as 

I,, = n,, + f + p , , / ~  ( 2 2 )  

while for the 6 variable we must distinguish the cases according to T,. 

If T ,  = 1 

(dF/dS)(&T) = O  ( 2 3 )  

( 2 4 )  IT2 P, d 5  = ns + P s /  T 

I ,  = 2n, + 2&/ T. ( 2 5 )  

I f  Tv  = -1 

F(&T) = 0 

I ,  = (2n,  + 1 )  + Z ~ , / T .  ( 2 8 )  

In order to determine the phases p, and p, we will concentrate mostly on the case 
k 2  f = E which allows us to expand the potentials up to second order in -q and 5 so 
that the equations become well approximated by 

d 2 G / d v 2 +  ( k 2 f 2 q 2 +  k 2 f 2  - E)G=O (29) 

d 2 F / d t 2 +  ( E  - k 2 f  2 +  k 2 f  ’ t 2 ) F  = 0 (30) 

d2y/dx2+( tx2-a)y=O.  ( 3 1 )  

which are both of the parabolic cylinder type: 

We obtain this equation if we use the variable x = ( 2 k f ) ’ ” v  instead of 7 and if we 
define a by 

= ( E  - k 2 f 2 ) / 2 k J  ( 3 2 )  
With a similar change of variable, x = ( 2 k f ) ’ ” &  we obtain the same equation for 5 
but we must modify the definition of a by a change of sign. 

We now concentrate on ( 3 1 ) .  It is known that the asymptotic forms of its solutions 
are (Abramowitz and Stegun 1972) 

YW = (c’/Jx)[cos w) - e] ( 3 3 )  

y2(x) = (~‘ /Jx)[cos 4 ( x ) +  el if y is odd (34) 

if y is even 
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with 

4 ( x )  = ax2- a log x + a r + +  arg( -++ia)  ! (35 )  

e =tan-'[(l+e2"a)'/2+e"~].  (36) 

The expressions (35)  and (36) are compatible with the W K B  for solution (31) which 
can be written generally as 

since one has 

( a ~ ' * - a ) ' ' ~ d ~ '  X - T  = ax2-a l o g x - i a + i a  loglal .  (38) 

This allows us to determine P to be 

p = e - L  4r +1 za l o g I a I - f a - ~ a r g ( - ~ + i c u ) ! .  (39) 

For the odd case, as can be seen from (34), we should simply replace 6 by - 6  or 
better by r - e. 

In this way we obtain two subsets of functions P, for 7) and 6 respectively, using 
a defined in (32) or its opposite value. Let P s  be defined by equation (39) and PA by 
(39) where 8 has been replaced by r - 8. We must then use the following functions 
in (22), (25) and (28) (using the definition (32) for a ) :  

for the symmetric states 

P ,  = P s ( a )  (40) 

Ps = P S (  - a )  (41) 

P, = P A ( Q )  (42) 

Pc = P A (  - a 1. (43 

for the antisymmetric states 

The functions P ( a )  are represented in figure l ( a ) .  The following values are interesting 
to consider: 

a++0O P S ,  P A  + ar (44) 

(45) 

a + --CO P S + O  PA+ ;r. (46) 

Since we have P s  = PA = ar for a + + 00, i.e. when 7)o f 0 (elliptic caustic), the symmetric 
and the antisymmetric states are in general degenerate. The only states which are not 
are the states with IC = 0. When a decreases the symmetric and the antisymmetric 
states split, a well known pairing effect first discussed by Ford et a1 (1959). The case 
a = 0 corresponds to the situation where one is exactly at the top of the barrier. 

The limits (44) and (46) given above correspond to the usual values of the W K B  

method. The disadvantages of strictly using these constant values ((44) for the case 
when the classical caustic is elliptic and (46) when it is hyperbolic) are well known 
and have been discussed in Ford et a1 (1959). Let us discuss them for our problem. 

p -1 p - 1  
CY=O s - a r ,  A - 8 r  
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1 a 
-2  -1 0 1 2 

Figure 1. Phases of the WKB wavefunctions defined in equations (18) and (19) plotted as 
a function of e. ( a )  The elliptic 'billiard' discussed in B 2. There the phases are different 
for symmetric (S) and antisymmetric (A) states. The arrows indicate the sense in which 
the phases p , ,  pc evolve as a function of a. A change in the sign of a occurs between 11 
and 5 (see equations (40)-(43)). ( b )  The prolate ellipsoid with similar conventions. 

( i)  As long as the caustic is elliptic, equation (44) holds and the states are degenerate, 
contrary to the quantum case. This is an old problem of barrier penetration which is 
solved by the use of the phases p which allow the degeneracy to split slowly when 
one crosses the barrier. 

(ii) The discontinuity in the actions which is created when one uses (46) instead of 
(44) needs to be compensated for by some dynamical change of the deformation. It 
can be shown (see D 5 )  that there is a domain of deformation in which one of two 
situations holds. 

(a) There are no solutions of equation ( 2 2 ) ,  neither with (44) nor with (46). 
(b) There is one solution using both (44) and (46) and the same quantum numbers. 
The use of the variable p completely removes these difficulties. In the limit of a 

circular billiard the motion described by 77 corresponds to a purely radial motion. 
Therefore in this limit n,, + n, the radial quantum number. On the other hand, the 
motion described by 6 corresponds to purely angular motion and the quantum number 
n, tends to 1, the angular momentum quantum number. 

All the physical effects of the billiard problem can be summarised in the following 
way: in the limit a = +cc the semiclassical state has an elliptic caustic and every state, 
except for states with 1 = 0, is doubly degenerate. When the summit of the barrier is 
approached and crossed the symmetric and the antisymmetric states built from a state 
n, I correspond to phase space cells which slowly go apart. The maximum slipping of 
each action cell is defined by AI,, ,  AI ,  such that 

A I  7 4  =-' AI ,  = +f for the symmetric states 

AI,, = +a A I  6 -  --I 2 for the antisymmetric states. 

The states 1 = 0 are all associated with symmetric states. This situation is represented 
in figure 2 ( b ) .  
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3. Prolate cavity 

In this case it is convenient to use a system of prolate spheroidal coordinates (Strutinsky 
et a1 1977): 

x = f sinh 77 sin 6 cos 4 
y = f  sinh 77 sin 6 sin 4 

(47) 

(48) 

z = f cosh 77 COS 6 
with 

(49) 

O S q < O o  0 S t S . r r  Os4<2.rr. 

The canonical momenta are then p4 = L,, the z component of the angular momen- 

(50)  

(51) 

Although we will only study the cases with pd = 0, the formulae are given for arbitrary 
P4. 

For L, = 0, we obtain the same expressions as (4) and (5) but we now have 0 s 6 s T. 

Similarly, after writing the wavefunction as 

tum, and p,,, ps given by 

p’, = k’ f’ cosh’ 7 -pi/sinh2 7 - E 

p i  = E - k’ f 2  cos2 6 -pi /s in2 6. 

the wave equation separates into 

For p+ = 0 we do not recover the classical values of the potential terms since we have 
the additional centripetal terms a sinh2 7 and f sin’ 6. We must therefore modify the 
discussion of the WKB phase. 

We note that there are three systems of turning points (points where 
(1/%)(d2%/dq2) = O  or (l /%)(d29/d6’) =O), changing E + a  into E’ .  

(i) If kf(kf - 1) < E ’  there is a turning point in the equation for 77. 
(ii) If kf (kf + 1) > E ’  there is a turning point in the equation for 6. 
(iii) If kf (kf - 1) < E ’ <  kf( kf + 1) the turning points disappear. 
The presence of the centripetal terms completely changes the discussion for the 

top of the barrier. On the other hand, it is also necessary to consider the cases of 
wavefunctions even under a h ,  the reflection with respect to the plane Oxy, i.e. 
(dS/d()(&) = 0, and also those which are odd, with S(i.rr) = 0. 

We now write (53) and (54) for 7 - 0 and 6 - 0 as 

d 2 9 / d t 2  + ( E ’  - k’f + k2f ’5’ + 1 / 4 t 2 ) S  = 0 

d’%/dT2(k2f ’- E ‘ +  k2f ’ v 2 +  1/47’)%= 0. 

d’y/dX2+(2-4p -x’+ 1/4x2)y=0 (57) 

( 5 5 )  

(56 )  
These equations can be reduced to the following form: 
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for which it is known that a solution is 

- F(P, 1 ;  x’) ( 5 8 )  
with F defined as a confluent hypergeometric function. Indeed, the change of variable 
x = (ikf)’I2( transforms ( 5 5 )  into (57) with 

p =;(I -ia) ( 5 9 )  
and 

a = ( k 2 f 2 - E ‘ ) / 2 k f :  

The same applies for equation ( 5 6 ) ,  but we must define p by changing the sign of a. 
The asymptotic behaviour of S(6) for 6 >> 1 is now written as (Abramowitz and Stegun 
1972) 

S ( ( ) ~ , , l = ( - 1 ’ 2 c o s [ f k ~ 6 2 - ~  l o g t - f a  log( - f r+arg( - f+i ia ) ! ] .  ( 6 1 )  
Let us now write the WKB solution of (54) for p+ = 0 and ( large enough: 

SWKB(t) = c ‘ ( E ’ -  k 2 f 2 +  k’f’ sin’ ()-‘I4 

( E ’ -  k’f 2 +  k2f  sin’ 6‘)”’ d(’- P E ) .  cos(L: 
It is possible to identify ( 6 2 )  with ( 6 1 )  in the two following limits, which is sufficient 
for our purpose: 

E ’ >  k’f E ’ - k 2 f 2 < <  k 2 f 2  50=0 ( 6 3 )  
E ’ <  k 2 f 2  ( 6 4 )  

In both cases, which correspond to situations where one is near the top of the barrier, 
the phase of the cosine in ( 6 2 )  becomes identical to that of ( 6 1 )  if one takes 

( 6 5 )  
A similar expansion of equation ( 5 6 )  for the variable 77 leads to a phase p, similar 

to ( 6 5 ) ,  but with a replaced by - a  and vo=O if k 2 f 2 > E ’  and v0= 
arg sinh(E’- k’f ’ ) / k f ]  if k 2 f 2 <  E ’ .  

k 2 f 2  - E’<< k2f’  (0  2. ( k2f  ’ - E ’)/ k2 f ’. 

p, = f r  +fa(log $ 1  (Y I - I )  + arg( - $  + ita) !, 

The quantisation condition of the action I ,  is now written, using ( 2 0 ) ,  as 

I,, = n,, + f + p , , / r  ( 6 6 )  
while for the action I ,  we obtain the following, using ( 2 1 ) .  

If 9 is even under U,,, 
I ,  = 2n, + 2p,/ r. 

I ,  = 2n,+ 1 + 2 p , / r .  

( 6 7 )  

( 6 8 )  
The function P ( a )  defined by ( 6 5 )  is plotted in figure l ( b ) .  We have the three interesting 
limits 

a++oOor-oO p + i r  and ( Y = O  p =ir. ( 6 9 )  
While there is a significant change in the Maslov indices for the ‘billiard’ problem, 

the present values of p deviate little from fr .  Therefore the quantisation conditions 
for almost every a can be written 

If 9 is odd under U,,, 

I , , = n + i  (70) 
I ,  = I + $  ( 7 1 )  

where 1 = 2 n p  or 2 n , + l .  
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Odd L cell 

I 

V A  1 I 
@ / " I F  2 3 
1 

P r o i a  i e Even L cel l  Oblate 

E I1 ipt ic bill  lard 

1, 

0 ' i s  2 0 1 I <  2 
Symmetric states Antisymmetric states 

Figure 2. The lattices of quantisation of the three systems discussed in the text. Crosses 
and circles are points of the quantisation lattice associated to elliptic and hyperbolic caustics 
respectively in the primitive WKB approximation. The arrows indicate how the points 
should be connected through the uniform approximation. The line denoted separatrix 
indicates the actions of trajectories lying on the separatrix for an arbitrary deformation 
p = R , / R , .  When p increases the line rotates around the origin, as shown by an arrow. 
The slipping of the action cells is to be noted, if present. 

Thus the summit of the barrier is crossed in a particularly smooth way in the prolate 
case. Numerical calculations reported in Arvieu and Ayant (1987) confirm this smooth 
behaviour. 

We have written the quantum numbers in equations (70) and (71)  as n and 1 because 
the action I ,  tends to the radial action in the spherical limit while I, tends to the 
angular action which obeys the well known rule l+i .  We note that it is the same 
function pS, defined by equation (65), which allows the quantisation for the even as 
well as the odd values of 1. 

If we summarise the physical effect in the same way as at the end of 0 2 we say 
that there is a very tiny oscillation of the phase space cell around the values (70) and 
(71) when we follow a state as a function of a. These constant values are represented 
in the upper part of figure 2. 

4. Oblate cavity 

The oblate spheroidal coordinate system is now appropriate (the difference from 
equations (47)-(49) is that we must interchange sinh 7 with cosh 7). The expressions 
for p,, and pS are now written 

(72) 

(73) 

p', = k2f * cosh' 7 +pi/cosh2 7 - E 

p i  = E - k2f  sin2 6 -pi/sin2 6. 
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After defining the wavefunction as 

we obtain the coupled wave equations 

Again, for pc  = 0 we obtain a centripetal term for the variable 6 and an additional 
term -+cosh2 7 in equation (75)  which produces a slight change in the potential 
barrier for 7 -0. The potential barriers in equation (75)  and (76) complement each 
other exactly since (still for p b  = 0) 

(i)  for k2f2< E +f there is a turning point in the equation for 7 (75) ,  
(ii) for k2f 2 >  E +$ there is a turning point in the equation for 6 (76), and 
(iii) for k2f = E +$ this value defines the separatrix. 
Equation (76) is the most complex. The pseudopotential k2f sin2 6 - 114 sin2 6 

combines a maximum at 6 = $T with a singularity for 6 = 0 and T. The restriction of 
equation (76) to small values of 6 leads to the equation (we use again E '  = E ++) 

d 2 9 / d t 2 +  (E'-  k2f 2,$2+ 1/4t2) 9= 0 (77) 

which also has a solution written in terms of a confluent hypergeometric function 
(defined below within a normalisation constant) 

We can now use the asymptotic properties of F to prove the very simple result 

9 W K B ( [ )  - C t  cOs(ay-+ . r r ) .  (80) 

Thus the line of singularity along the axis Oz creates a phase of -:T only in the 
WKB solution. 

The discussion for the wavefunction near 6 = i.rr is very similar to that given in 0 2. 
The total wavefunction CC, should be even or odd with respect to a h ,  which corresponds 
to the operation 6 + T - 6. If ,$ = $IT we have, using 6' = 

that if Wt2<< E' and for any E' and k2 f 2  then 

- ,$ and 6; = $IT - to, 
d 2 9 / d f 2  + ( E ' + :  - k2f 2 +  k2f 2['2) 9= 0 (81 )  

which is of the parabolic cylinder type equation (30). 
Its WKB solution can be written in obvious notation as 

with & given by (39) if the wavefunction is even under U,,, or by (39) with 8 + T - 0 
if it is odd. We must use the value of 1y given by 

(Z =[k2f2-(E + f ) ] / 2 k f .  (83) 
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The identification of (80) and (82) leads to 

p ,d [ -&-a r=n , r  6" 
For the variable 7 we have, near 7 = 0, 

d2 %/dT2 + [ k2f - ( E ' +  a )  + k2f 2772] 3 = 0. 

Therefore we must again use 

a = ( E  +f- k2f 2)/2kf 

and we have the same results as in 0 2 for the action integral I,: 

I,, = n,+f+&/.rr .  (87b) 

According to the parity, under ffh the phases p, and p, are p, = &(a), p, = Ps(  - a )  
for the even parity and P h  = PA(a) ,  /3, = PA( - a )  for the odd parity, where a is given 
by (87). 

In the limit a + +03 we obtain 

I , = n , + a  (88) 

I, = 2n, + f when + is even under (Th  (89a) 

I* = 2n, + 1 ++ when + is odd under ffh. (89b) 

In the limit of a spherical cavity, the motion described by 7 becomes the radial motion 
while the motion described by [ becomes the angular motion. There the quantisation 
condition, (88) and (89), becomes 

I , = n + t  I* = 1 + ;  (90) 

where 1 is the quantum number associated with the angular momentum. The states 
which are even under crh are identified with the even 1 states and the odd states under 
(Th are identified with the odd 1 states. 

Using the notation n, 1 let us now write the limit a + --CO. If 1 is even, then 

1, = n + f  I , = l + l .  (91) 
If 1 is odd, then 

I , = n + l  I ,  = 1. (92) 
When a goes from + 00 to - 03, i.e. when we cross the separatrix, there is a slipping 

of the action cell from (90) to (91) for 1 even, and from (90) to (92) for 1 odd, i.e. for 
even 1 

A I  T 4  =-I AI, = +f 

and for odd 1 
(93) 

AI,, = +a AI,= -f. (94) 
This slipping corresponds to a different rate of crossing the top of the barrier. The 

very top is obtained when the change in the action cell is exactly half that predicted 
by (93) and (94). Again, this slipping is represented in figure 2, along with the situation 
described in $ 0  2 and 3. 
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5. Action surface 

There is a last step which must be cleared up in order to disclose the common classical 
skeleton of the three problems: the existence of a common energy-action surface. 

Let us return to the billiard problem where the action integrals I ,  and It are defined 
by equations (20) and (21). Using (4), ( 5 ) ,  ( l l ) ,  (12) and (16) they can be put in the 
general form 

1, = kf9,(e, eo) (95) 

16 = kf9, ( e, eo) (96) 

where $,, and $6 are definite integrals which depend only on the eccentricity e of the 
elliptic boundary and that of the caustic e,. Equations (95) and (96) provide a 
parametric representation of the relation between the energy k2/2m and the actions 
that we write as 

(97) E = E ( I , ,  16, e)  

the parameter being eo. This defines the energy-action surface of the problem. The 
precise forms of 9, and de are given by Keller and Rubinov (1960) in terms of elliptic 
integrals. The semiclassical values of the energy of the ‘billiard’ problem are given by 
the values of E for which the actions satisfy equations (22), (25) or (28). We note 
that for the prolate problem we can also use this surface, but with equations (66)-(68). 
Finally, for the oblate problem we can use again this surface but with the rules (87) 
and (85). 

We are therefore able to associate the surface with the classical motion common 
to the three problems but we must use a different lattice of quantisation for each one. 
Moreover, as described at the end of § §  2-4, each of these lattices moves in a specific 
way when we increase the deformation. 

We now meet the important problem of finding when a classical motion with specific 
actions is found on the separatrix. The equations to be solved (for kf and e )  are 

I ,  = kf9, (e, 1 ) (98) 

I6 = kf9t(e, 1 ) .  (99) 

We find the very simple integrals for eo= 1 

1 1 
I ,  =- 1;‘ kf sinh q dq  =- k ( R ,  - f) (100a) 

rr rr 

2 
I ,  = 1; kf sin 6 d t  = - k j  (100b) 

From equations (100) we deduce the value es of the eccentricity of the cavity and the 
value k, of k for which a state is found on the separatrix: 

5r 

e, = 1J(24, + (101) 

k, f = rr/21e 

Equation (102) and 

I 1-e,  -2-- - 
I ,  2es 
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define a plane in the space E, I , ,  I ,  which intersects the energy-action surface on a 
line which separates the surface into two regions. It can easily be seen that if 

I ,  1 - e ,  ->- e,< 1 
IC 2% 

this part is associated to motion with elliptic caustic, while that with hyperbclic caustic 
is found whenever 

The line (1 - e , ) /2eS is shown for an arbitrary e, in figure 2 .  Equation (103) shows that 
this line rotates around the origin. In the limit es = 0 all the caustics are circles and 
the line is vertical; when e, increases the caustics become elliptic in general and those 
associated with motion with small angular momentum and high radial action are the 
first to cross the separatrix. The higher the angular momentum, the larger the eccen- 
tricity e, needed to cross the separatrix. 

This picture is purely classical. The specific contribution of the semiclassical 
quantisation is to tie specific values to the actions through a quantisation lattice which 
also moves in the plane I , ,  IC according to the rules defined above. The slipping of 
the lattice is either in the same sense as the rotation of the separatrix, which indicates 
a delay in crossing this singularity (like the symmetric states in the ‘billiard’, or as the 
even 1 states of the oblate ellipsoid) or else in the opposite direction (like the antisym- 
metric states in the billiard and the odd 1 states of the prolate ellipsoid, which indicates 
an advance for the crossing. These differences are observed in the quantum spectrum, 
as is shown in Arvieu and Ayant (1987), and they bring about marked differences in 
the spectrum of an oblate spheroid compared to that of the prolate spectrum. All this 
will be discussed later. 
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